9 Modern Python Libraries You Must Know in 2025! π
I have discovered these few game changer modern set of libraries that you should must know in 2025.

LEVEL UP YOUR PYTHON SKILLS WITH THESE
9 Modern Python Libraries You Must Know in 2025! π
Hey Everyone, as we know python has a vast set of amazing libraries and many of them are really a game changer.
So, i have discovered these few game changer modern set of libraries that you should must know if you want to stay ahead in 2025.
So i have discovered 100 essential Python libraries that can help to supercharge your project, Please check this out

1. PolarsβββThe Blazing-Fast DataFrame Library
Polars is a blazingly fast DataFrame library written in Rust for manipulating structured data.

Why You Should Use It: This is 10xβ100x faster than Pandas. It Supports lazy evaluation for large datasets and works natively with Apache Arrow
Docs : https://docs.pola.rs/
Installation
pip install polars
Example
This is simple example to create a DataFrame using Polars:
import polars as pl
import datetime as dt
df = pl.DataFrame(
{
"name": ["Alice Archer", "Ben Brown", "Chloe Cooper", "Daniel Donovan"],
"birthdate": [
dt.date(1997, 1, 10),
dt.date(1985, 2, 15),
dt.date(1983, 3, 22),
dt.date(1981, 4, 30),
],
"weight": [57.9, 72.5, 53.6, 83.1], # (kg)
"height": [1.56, 1.77, 1.65, 1.75], # (m)
}
)
print(df)
shape: (4, 4)
ββββββββββββββββββ¬βββββββββββββ¬βββββββββ¬βββββββββ
β name β birthdate β weight β height β
β --- β --- β --- β --- β
β str β date β f64 β f64 β
ββββββββββββββββββͺβββββββββββββͺβββββββββͺβββββββββ‘
β Alice Archer β 1997-01-10 β 57.9 β 1.56 β
β Ben Brown β 1985-02-15 β 72.5 β 1.77 β
β Chloe Cooper β 1983-03-22 β 53.6 β 1.65 β
β Daniel Donovan β 1981-04-30 β 83.1 β 1.75 β
ββββββββββββββββββ΄βββββββββββββ΄βββββββββ΄βββββββββ
2. RuffβββThe Fastest Python formatter & Linter
Ruff is a blazing-fast linter written in Rust, designed to replace Flake8, Black, and isort in one tool.
Why You Should Use It: This is 20x faster than Flake8, supports auto-fixing issues and works as a formatter and linter
Docs : https://docs.astral.sh/ruff/
Installation
pip install ruff
Example
We can use uv to initialize a project:
uv init --lib demo
This command creates a Python project with the following structure:
demo
βββ README.md
βββ pyproject.toml
βββ src
βββ demo
βββ __init__.py
βββ py.typed
Weβll then replace the contents of src/demo/__init__.py
with the following code:
from typing import Iterable
import os
def sum_even_numbers(numbers: Iterable[int]) -> int:
"""Given an iterable of integers, return the sum of all even numbers in the iterable."""
return sum(
num for num in numbers
if num % 2 == 0
)
Next, weβll add Ruff to our project:
uv add --dev ruff
We can then run the Ruff linter over our project via uv run ruff check
:
$ uv run ruff check
src/numbers/__init__.py:3:8: F401 [*] `os` imported but unused
Found 1 error.
[*] 1 fixable with the `--fix` option.
we can resolve the issue automatically by running ruff check --fix
:
$ uv run ruff check --fix
Found 1 error (1 fixed, 0 remaining).
3. PyScriptβββRun Python in the Browser
PyScript lets you write and execute Python code in the browser, similar to JavaScript.
Why You Should Use It: It enables Python-powered web apps, works directly in HTML and No backend needed!
Docs : https://docs.pyscript.net/2025.2.4/
Installation
We donβt need to install PyScript, instead of this simply add a <script>
and link tag, to your HTML document's <head>
<!-- PyScript CSS -->
<link rel="stylesheet" href="https://pyscript.net/releases/2025.2.4/core.css">
<!-- This script tag bootstraps PyScript -->
<script type="module" src="https://pyscript.net/releases/2025.2.4/core.js"></script>
Example
Create a simple .html file and user <py-script> tag write your python code.
<!doctype html>
<html>
<head>
<!-- Recommended meta tags -->
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!-- PyScript CSS -->
<link rel="stylesheet" href="https://pyscript.net/releases/2025.2.4/core.css">
<!-- This script tag bootstraps PyScript -->
<script type="module" src="https://pyscript.net/releases/2025.2.4/core.js"></script>
</head>
<body>
<!-- Now you can use <py-script> tag to write your python code inside-->
<py-script>
import sys
from pyscript import display
display(sys.version)
</py-script>
</body>
</html>
4. PanderaβββData Validation for Pandas
Pandera helps validate Pandas DataFrames and Series using schema-based validation.

Why You Should Use It: It Catch data errors before processing, works like Pydantic, but for Pandas and supports unit testing for data!
Docs : https://pandera.readthedocs.io/en/stable/
Installation
pip install pandera
Example
import pandas as pd
import pandera as pa
# Data to validate
df = pd.DataFrame({
"column1": [1, 4, 0, 10, 9],
"column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
"column3": ["value_1", "value_2", "value_3", "value_2", "value_1"],
})
# Define schema
schema = pa.DataFrameSchema({
"column1": pa.Column(int, checks=pa.Check.le(10)),
"column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
"column3": pa.Column(str, checks=[
pa.Check.str_startswith("value_"),
# define custom checks as functions that take a series as input and
# outputs a boolean or boolean Series
pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
]),
})
validated_df = schema(df)
print(validated_df)
column1 column2 column3
0 1 -1.3 value_1
1 4 -1.4 value_2
2 0 -2.9 value_3
3 10 -10.1 value_2
4 9 -20.4 value_1
5. JAXβββFaster Deep Learning with Googleβs Magic
JAX is a high-performance library for machine learning and numerical computing, built by Google.
Why You Should Use It: It is faster than NumPy using GPU/TPU acceleration, Supports automatic differentiation and Used in Googleβs AI projects
Docs : https://docs.jax.dev/en/latest/quickstart.html
Installation
- CPU-only (Linux/macOS/Windows)
pip install -U jax
- GPU (NVIDIA, CUDA 12)
pip install -U "jax[cuda12]"
- TPU (Google Cloud TPU VM)
pip install -U "jax[tpu]"
Example
A simple example to create a numPy-style array.
import jax.numpy as jnp
def selu(x, alpha=1.67, lmbda=1.05):
return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
x = jnp.arange(5.0)
print(selu(x))
[0. 1.05 2.1 3.1499999 4.2 ]
6. TextualβββBuild TUI Apps in Python
Textual allows you to build modern Terminal UI apps (TUI) in Python with rich components.
Why You Should Use It: To Create beautiful terminal apps, Works with Rich for styling and No frontend experience needed!
Docs : https://textual.textualize.io/tutorial/
Installation
pip install textual
Example
A simple example to create a TUI Apps.
from textual.app import App, ComposeResult
from textual.widgets import Label, Button
class QuestionApp(App[str]):
def compose(self) -> ComposeResult:
yield Label("Do you love Textual?")
yield Button("Yes", id="yes", variant="primary")
yield Button("No", id="no", variant="error")
def on_button_pressed(self, event: Button.Pressed) -> None:
self.exit(event.button.id)
if __name__ == "__main__":
app = QuestionApp()
reply = app.run()
print(reply)
Running this app will give you this result:

7. LlamaIndexβββBuild Custom AI Assistants
LlamaIndex simplifies indexing and querying large datasets for LLM-powered applications.
Why You Should Use It: It is used for RAG (Retrieval-Augmented Generation), Works with OpenAI GPT models and Handles structured and unstructured data.
Docs : https://docs.llamaindex.ai/en/stable/#getting-started
Installation
pip install llama-index
Example
Letβs start with a simple example using an agent that can perform basic multiplication by calling a tool. Create a file called starter.py
:
- Set an environment variable called
OPENAI_API_KEY
with an OpenAI API key.
import asyncio
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.llms.openai import OpenAI
# Define a simple calculator tool
def multiply(a: float, b: float) -> float:
"""Useful for multiplying two numbers."""
return a * b
# Create an agent workflow with our calculator tool
agent = AgentWorkflow.from_tools_or_functions(
[multiply],
llm=OpenAI(model="gpt-4o-mini"),
system_prompt="You are a helpful assistant that can multiply two numbers.",
)
async def main():
# Run the agent
response = await agent.run("What is 1234 * 4567?")
print(str(response))
# Run the agent
if __name__ == "__main__":
asyncio.run(main())
The result of \( 1234 \times 4567 \) is \( 5,678,678 \).
8. RobynβββThe Fastest Python Web Framework
Robyn is a high-performance alternative to Flask and FastAPI, optimized for multi-core processing.

Why You Should Use It: It 5x faster than FastAPI. It Supports async and multi-threading and Uses Rust for speed
Docs : https://robyn.tech/documentation/en
Installation
pip install robyn
Example
Letβs create simple project by using this command :
$ python -m robyn --create
This, would result in the following output.
$ python3 -m robyn --create
? Directory Path: .
? Need Docker? (Y/N) Y
? Please select project type (Mongo/Postgres/Sqlalchemy/Prisma):
β― No DB
Sqlite
Postgres
MongoDB
SqlAlchemy
Prisma
This will created a new application with the following structure.
βββ src
β βββ app.py
βββ Dockerfile
You can now write a code in app.py file:
from robyn import Request
@app.get("/")
async def h(request: Request) -> str:
return "Hello, world"
You can use this command to run the server :
python -m robyn app.py
9. DuckDBβββThe Lightning-Fast In-Memory Database

DuckDB is an in-memory SQL database that is faster than SQLite for analytics.
Why You Should Use It: It is Blazing-fast for analytics, Works without a server and Easily integrates with Pandas & Polars
Docs : https://duckdb.org/docs/stable/clients/python/overview.html
Installation
pip install duckdb --upgrade
Example
A simple example with pandas dataframe :
import duckdb
import pandas as pd
pandas_df = pd.DataFrame({"a": [42]})
duckdb.sql("SELECT * FROM pandas_df")
βββββββββ
β a β
β int64 β
βββββββββ€
β 42 β
βββββββββ
Final Thoughts
These 9 modern Python libraries will supercharge your workflow in 2025.
Which library is your favorite? Let me know in the comments! π₯