9 Modern Python Libraries You Must Know in 2025! πŸš€

I have discovered these few game changer modern set of libraries that you should must know in 2025.

9 Modern Python Libraries You Must Know in 2025! πŸš€
Photo by Patrick SchΓΆpflin on Unsplash

LEVEL UP YOUR PYTHON SKILLS WITH THESE

9 Modern Python Libraries You Must Know in 2025! πŸš€

Hey Everyone, as we know python has a vast set of amazing libraries and many of them are really a game changer.

So, i have discovered these few game changer modern set of libraries that you should must know if you want to stay ahead in 2025.


So i have discovered 100 essential Python libraries that can help to supercharge your project, Please check this out
100 Essential Python Libraries to Supercharge Your Projects πŸš€β€Šβ€”β€ŠFrom AI to Web Development!
I have discovered 100 essential Python libraries that can help to supercharge your project.

1. Polarsβ€Šβ€”β€ŠThe Blazing-Fast DataFrame Library

Polars is a blazingly fast DataFrame library written in Rust for manipulating structured data.

Why You Should Use It: This is 10x–100x faster than Pandas. It Supports lazy evaluation for large datasets and works natively with Apache Arrow
Docs : https://docs.pola.rs/

Installation

pip install polars

Example

This is simple example to create a DataFrame using Polars:

import polars as pl 
import datetime as dt 
 
df = pl.DataFrame( 
    { 
        "name": ["Alice Archer", "Ben Brown", "Chloe Cooper", "Daniel Donovan"], 
        "birthdate": [ 
            dt.date(1997, 1, 10), 
            dt.date(1985, 2, 15), 
            dt.date(1983, 3, 22), 
            dt.date(1981, 4, 30), 
        ], 
        "weight": [57.9, 72.5, 53.6, 83.1],  # (kg) 
        "height": [1.56, 1.77, 1.65, 1.75],  # (m) 
    } 
) 
 
print(df)
shape: (4, 4) 
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β” 
β”‚ name           ┆ birthdate  ┆ weight ┆ height β”‚ 
β”‚ ---            ┆ ---        ┆ ---    ┆ ---    β”‚ 
β”‚ str            ┆ date       ┆ f64    ┆ f64    β”‚ 
β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════β•ͺ════════β•ͺ════════║ 
β”‚ Alice Archer   ┆ 1997-01-10 ┆ 57.9   ┆ 1.56   β”‚ 
β”‚ Ben Brown      ┆ 1985-02-15 ┆ 72.5   ┆ 1.77   β”‚ 
β”‚ Chloe Cooper   ┆ 1983-03-22 ┆ 53.6   ┆ 1.65   β”‚ 
β”‚ Daniel Donovan ┆ 1981-04-30 ┆ 83.1   ┆ 1.75   β”‚ 
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜

2. Ruffβ€Šβ€”β€ŠThe Fastest Python formatter & Linter

Ruff is a blazing-fast linter written in Rust, designed to replace Flake8, Black, and isort in one tool.

Why You Should Use It: This is 20x faster than Flake8, supports auto-fixing issues and works as a formatter and linter
Docs : https://docs.astral.sh/ruff/

Installation

pip install ruff

Example

We can use uv to initialize a project:

uv init --lib demo

This command creates a Python project with the following structure:

demo 
  β”œβ”€β”€ README.md 
  β”œβ”€β”€ pyproject.toml 
  └── src 
      └── demo 
          β”œβ”€β”€ __init__.py 
          └── py.typed

We’ll then replace the contents of src/demo/__init__.py with the following code:

from typing import Iterable 
 
import os 
 
 
def sum_even_numbers(numbers: Iterable[int]) -> int: 
    """Given an iterable of integers, return the sum of all even numbers in the iterable.""" 
    return sum( 
        num for num in numbers 
        if num % 2 == 0 
    )

Next, we’ll add Ruff to our project:

uv add --dev ruff

We can then run the Ruff linter over our project via uv run ruff check:

$ uv run ruff check 
src/numbers/__init__.py:3:8: F401 [*] `os` imported but unused 
Found 1 error. 
[*] 1 fixable with the `--fix` option.

we can resolve the issue automatically by running ruff check --fix:

$ uv run ruff check --fix 
Found 1 error (1 fixed, 0 remaining).

3. PyScriptβ€Šβ€”β€ŠRun Python in the Browser

PyScript lets you write and execute Python code in the browser, similar to JavaScript.

Why You Should Use It: It enables Python-powered web apps, works directly in HTML and No backend needed!
Docs : https://docs.pyscript.net/2025.2.4/

Installation

We don’t need to install PyScript, instead of this simply add a <script> and link tag, to your HTML document's <head>

<!-- PyScript CSS --> 
<link rel="stylesheet" href="https://pyscript.net/releases/2025.2.4/core.css"> 
<!-- This script tag bootstraps PyScript --> 
<script type="module" src="https://pyscript.net/releases/2025.2.4/core.js"></script>

Example

Create a simple .html file and user <py-script> tag write your python code.

<!doctype html> 
<html> 
    <head> 
        <!-- Recommended meta tags --> 
        <meta charset="UTF-8"> 
        <meta name="viewport" content="width=device-width,initial-scale=1.0"> 
        <!-- PyScript CSS --> 
        <link rel="stylesheet" href="https://pyscript.net/releases/2025.2.4/core.css"> 
        <!-- This script tag bootstraps PyScript --> 
        <script type="module" src="https://pyscript.net/releases/2025.2.4/core.js"></script> 
    </head> 
    <body> 
        <!-- Now you can use <py-script> tag to write your python code inside--> 
        <py-script> 
          import sys 
          from pyscript import display 
           
          display(sys.version) 
        </py-script> 
    </body> 
</html>

4. Panderaβ€Šβ€”β€ŠData Validation for Pandas

Pandera helps validate Pandas DataFrames and Series using schema-based validation.

Why You Should Use It: It Catch data errors before processing, works like Pydantic, but for Pandas and supports unit testing for data!
Docs : https://pandera.readthedocs.io/en/stable/

Installation

pip install pandera

Example

import pandas as pd 
import pandera as pa 
 
# Data to validate 
df = pd.DataFrame({ 
    "column1": [1, 4, 0, 10, 9], 
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4], 
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"], 
}) 
 
# Define schema 
schema = pa.DataFrameSchema({ 
    "column1": pa.Column(int, checks=pa.Check.le(10)), 
    "column2": pa.Column(float, checks=pa.Check.lt(-1.2)), 
    "column3": pa.Column(str, checks=[ 
        pa.Check.str_startswith("value_"), 
        # define custom checks as functions that take a series as input and 
        # outputs a boolean or boolean Series 
        pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2) 
    ]), 
}) 
 
validated_df = schema(df) 
print(validated_df)
column1  column2  column3 
0        1     -1.3  value_1 
1        4     -1.4  value_2 
2        0     -2.9  value_3 
3       10    -10.1  value_2 
4        9    -20.4  value_1

5. JAXβ€Šβ€”β€ŠFaster Deep Learning with Google’s Magic

JAX is a high-performance library for machine learning and numerical computing, built by Google.

Why You Should Use It: It is faster than NumPy using GPU/TPU acceleration, Supports automatic differentiation and Used in Google’s AI projects
Docs : https://docs.jax.dev/en/latest/quickstart.html

Installation

  • CPU-only (Linux/macOS/Windows)
pip install -U jax
  • GPU (NVIDIA, CUDA 12)
pip install -U "jax[cuda12]"
  • TPU (Google Cloud TPU VM)
pip install -U "jax[tpu]"

Example

A simple example to create a numPy-style array.

import jax.numpy as jnp 
 
def selu(x, alpha=1.67, lmbda=1.05): 
  return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha) 
 
x = jnp.arange(5.0) 
print(selu(x))
[0.        1.05      2.1       3.1499999 4.2      ]

6. Textualβ€Šβ€”β€ŠBuild TUI Apps in Python

Textual allows you to build modern Terminal UI apps (TUI) in Python with rich components.

Why You Should Use It: To Create beautiful terminal apps, Works with Rich for styling and No frontend experience needed!
Docs : https://textual.textualize.io/tutorial/

Installation

pip install textual

Example

A simple example to create a TUI Apps.

from textual.app import App, ComposeResult 
from textual.widgets import Label, Button 
 
 
class QuestionApp(App[str]): 
    def compose(self) -> ComposeResult: 
        yield Label("Do you love Textual?") 
        yield Button("Yes", id="yes", variant="primary") 
        yield Button("No", id="no", variant="error") 
 
    def on_button_pressed(self, event: Button.Pressed) -> None: 
        self.exit(event.button.id) 
 
 
if __name__ == "__main__": 
    app = QuestionApp() 
    reply = app.run() 
    print(reply)

Running this app will give you this result:

7. LlamaIndexβ€Šβ€”β€ŠBuild Custom AI Assistants

LlamaIndex simplifies indexing and querying large datasets for LLM-powered applications.

Why You Should Use It: It is used for RAG (Retrieval-Augmented Generation), Works with OpenAI GPT models and Handles structured and unstructured data.
Docs : https://docs.llamaindex.ai/en/stable/#getting-started

Installation

pip install llama-index

Example

Let’s start with a simple example using an agent that can perform basic multiplication by calling a tool. Create a file called starter.py:

  • Set an environment variable called OPENAI_API_KEY with an OpenAI API key.
import asyncio 
from llama_index.core.agent.workflow import AgentWorkflow 
from llama_index.llms.openai import OpenAI 
 
 
# Define a simple calculator tool 
def multiply(a: float, b: float) -> float: 
    """Useful for multiplying two numbers.""" 
    return a * b 
 
 
# Create an agent workflow with our calculator tool 
agent = AgentWorkflow.from_tools_or_functions( 
    [multiply], 
    llm=OpenAI(model="gpt-4o-mini"), 
    system_prompt="You are a helpful assistant that can multiply two numbers.", 
) 
 
 
async def main(): 
    # Run the agent 
    response = await agent.run("What is 1234 * 4567?") 
    print(str(response)) 
 
 
# Run the agent 
if __name__ == "__main__": 
    asyncio.run(main())
The result of \( 1234 \times 4567 \) is \( 5,678,678 \).

8. Robynβ€Šβ€”β€ŠThe Fastest Python Web Framework

Robyn is a high-performance alternative to Flask and FastAPI, optimized for multi-core processing.

Why You Should Use It: It 5x faster than FastAPI. It Supports async and multi-threading and Uses Rust for speed
Docs : https://robyn.tech/documentation/en

Installation

pip install robyn

Example

Let’s create simple project by using this command :

$ python -m robyn --create

This, would result in the following output.

$ python3 -m robyn --create 
? Directory Path: . 
? Need Docker? (Y/N) Y 
? Please select project type (Mongo/Postgres/Sqlalchemy/Prisma): 
❯ No DB 
  Sqlite 
  Postgres 
  MongoDB 
  SqlAlchemy 
  Prisma

This will created a new application with the following structure.

β”œβ”€β”€ src 
β”‚   β”œβ”€β”€ app.py 
β”œβ”€β”€ Dockerfile

You can now write a code in app.py file:

from robyn import Request 
 
@app.get("/") 
async def h(request: Request) -> str: 
    return "Hello, world"

You can use this command to run the server :

python -m robyn app.py

9. DuckDBβ€Šβ€”β€ŠThe Lightning-Fast In-Memory Database

DuckDB is an in-memory SQL database that is faster than SQLite for analytics.

Why You Should Use It: It is Blazing-fast for analytics, Works without a server and Easily integrates with Pandas & Polars
Docs : https://duckdb.org/docs/stable/clients/python/overview.html

Installation

pip install duckdb --upgrade

Example

A simple example with pandas dataframe :

import duckdb 
import pandas as pd 
 
pandas_df = pd.DataFrame({"a": [42]}) 
duckdb.sql("SELECT * FROM pandas_df")
β”Œβ”€β”€β”€β”€β”€β”€β”€β” 
β”‚   a   β”‚ 
β”‚ int64 β”‚ 
β”œβ”€β”€β”€β”€β”€β”€β”€β”€ 
β”‚    42 β”‚ 
β””β”€β”€β”€β”€β”€β”€β”€β”˜

Final Thoughts

These 9 modern Python libraries will supercharge your workflow in 2025.

Which library is your favorite? Let me know in the comments! πŸ”₯