5 Modern Python Libraries You Must Know in 2025! 🚀

I have discovered these few game changer modern set of libraries that you should must know in 2025.

5 Modern Python Libraries You Must Know in 2025! 🚀
Photo by Fábio Lucas on Unsplash

LEVEL UP YOUR PYTHON SKILLS WITH THESE

5 Modern Python Libraries You Must Know in 2025! 🚀

Hey Everyone, as we know python has a vast set of amazing libraries and many of them are really a game changer.

So, i have discovered these 5 few game changer modern set of libraries that you should must know if you want to stay ahead in 2025.


9 Modern Python Libraries You Must Know in 2025! 🚀
I have discovered these few game changer modern set of libraries that you should must know in 2025.

1. Reflex — Build Full-Stack Web Apps in Pure Python

Reflex is amazing library allows you to build full-stack web applications using only Python — no JavaScript required!

Docs : https://github.com/reflex-dev/reflex

Installation

pip install reflex

Example

You can use these command to create a reflex project:

mkdir my_app_name 
cd my_app_name 
reflex init

Let’s create a simple app :

import reflex as rx 
import openai 
 
openai_client = openai.OpenAI() 
 
 
# Backend code 
class State(rx.State): 
    """The app state.""" 
 
    prompt = "" 
    image_url = "" 
    processing = False 
    complete = False 
 
    def get_image(self): 
        """Get the image from the prompt.""" 
        if self.prompt == "": 
            return rx.window_alert("Prompt Empty") 
 
        self.processing, self.complete = True, False 
        yield 
        response = openai_client.images.generate( 
            prompt=self.prompt, n=1, size="1024x1024" 
        ) 
        self.image_url = response.data[0].url 
        self.processing, self.complete = False, True 
 
 
# Frontend code 
def index(): 
    return rx.center( 
        rx.vstack( 
            rx.heading("DALL-E", font_size="1.5em"), 
            rx.input( 
                placeholder="Enter a prompt..", 
                on_blur=State.set_prompt, 
                width="25em", 
            ), 
            rx.button( 
                "Generate Image",  
                on_click=State.get_image, 
                width="25em", 
                loading=State.processing 
            ), 
            rx.cond( 
                State.complete, 
                rx.image(src=State.image_url, width="20em"), 
            ), 
            align="center", 
        ), 
        width="100%", 
        height="100vh", 
    ) 
 
# Add state and page to the app. 
app = rx.App() 
app.add_page(index, title="Reflex:DALL-E")

Hit this command to run development server :

reflex run

You should see your app running at http://localhost:3000.

Credit : Reflex

2. FastStream — The Future of Message Queue Processing

FastStream is a modern async messaging framework built for RabbitMQ, Kafka, and NATS, making distributed event-driven systems easier.

Docs : https://github.com/airtai/faststream

Installation

pip install faststream[kafka] 
# or 
pip install faststream[rabbit] 
# or 
pip install faststream[nats] 
# or 
pip install faststream[redis]

Example

Here is an example Python app using FastStream that consumes data from an incoming data stream and outputs the data to another one:

from faststream import FastStream 
from faststream.kafka import KafkaBroker 
# from faststream.rabbit import RabbitBroker 
# from faststream.nats import NatsBroker 
# from faststream.redis import RedisBroker 
 
broker = KafkaBroker("localhost:9092") 
# broker = RabbitBroker("amqp://guest:guest@localhost:5672/") 
# broker = NatsBroker("nats://localhost:4222/") 
# broker = RedisBroker("redis://localhost:6379/") 
 
app = FastStream(broker) 
 
@broker.subscriber("in") 
@broker.publisher("out") 
async def handle_msg(user: str, user_id: int) -> str: 
    return f"User: {user_id} - {user} registered"

Running the application :

faststream run basic:app --reload

3. Beanie — Async ODM for MongoDB

Beanie provides a modern, async-first Object Document Mapper (ODM) for MongoDB, making it easy to work with NoSQL databases.

Docs : https://github.com/BeanieODM/beanie

Installation

pip install beanie

Example

import asyncio 
from typing import Optional 
 
from motor.motor_asyncio import AsyncIOMotorClient 
from pydantic import BaseModel 
 
from beanie import Document, Indexed, init_beanie 
 
 
class Category(BaseModel): 
    name: str 
    description: str 
 
 
class Product(Document): 
    name: str                          # You can use normal types just like in pydantic 
    description: Optional[str] = None 
    price: Indexed(float)              # You can also specify that a field should correspond to an index 
    category: Category                 # You can include pydantic models as well 
 
 
# This is an asynchronous example, so we will access it from an async function 
async def example(): 
    # Beanie uses Motor async client under the hood  
    client = AsyncIOMotorClient("mongodb://user:pass@host:27017") 
 
    # Initialize beanie with the Product document class 
    await init_beanie(database=client.db_name, document_models=[Product]) 
 
    chocolate = Category(name="Chocolate", description="A preparation of roasted and ground cacao seeds.") 
    # Beanie documents work just like pydantic models 
    tonybar = Product(name="Tony's", price=5.95, category=chocolate) 
    # And can be inserted into the database 
    await tonybar.insert()  
     
    # You can find documents with pythonic syntax 
    product = await Product.find_one(Product.price < 10) 
     
    # And update them 
    await product.set({Product.name:"Gold bar"}) 
 
 
if __name__ == "__main__": 
    asyncio.run(example())

4. Haystack — Build Smart AI Search & Q&A Systems

Haystack enables real-time AI-powered search and question-answering systems, making it a must-have for LLM-based apps.

Docs : https://docs.haystack.deepset.ai/docs/get_started

Installation

pip install haystack-ai

Example

from haystack import Pipeline, Document 
from haystack.utils import Secret 
from haystack.document_stores.in_memory import InMemoryDocumentStore 
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever 
from haystack.components.generators import OpenAIGenerator 
from haystack.components.builders.prompt_builder import PromptBuilder 
 
# Write documents to InMemoryDocumentStore 
document_store = InMemoryDocumentStore() 
document_store.write_documents([ 
    Document(content="My name is Jean and I live in Paris."),  
    Document(content="My name is Mark and I live in Berlin."),  
    Document(content="My name is Giorgio and I live in Rome.") 
]) 
 
# Build a RAG pipeline 
prompt_template = """ 
Given these documents, answer the question. 
Documents: 
{% for doc in documents %} 
    {{ doc.content }} 
{% endfor %} 
Question: {{question}} 
Answer: 
""" 
 
retriever = InMemoryBM25Retriever(document_store=document_store) 
prompt_builder = PromptBuilder(template=prompt_template) 
llm = OpenAIGenerator(api_key=Secret.from_token(api_key)) 
 
rag_pipeline = Pipeline() 
rag_pipeline.add_component("retriever", retriever) 
rag_pipeline.add_component("prompt_builder", prompt_builder) 
rag_pipeline.add_component("llm", llm) 
rag_pipeline.connect("retriever", "prompt_builder.documents") 
rag_pipeline.connect("prompt_builder", "llm") 
 
# Ask a question 
question = "Who lives in Paris?" 
results = rag_pipeline.run( 
    { 
        "retriever": {"query": question}, 
        "prompt_builder": {"question": question}, 
    } 
) 
 
print(results["llm"]["replies"])

5. Litestar — A Next-Gen API Framework

Litestar is a modern, async-first alternative to FastAPI, offering speed, flexibility, and powerful dependency injection.

Docs : https://docs.litestar.dev/latest/

Installation

pip install litestar

Example

First, create a file named app.py with the following code:

# app.py 
from litestar import Litestar, get 
 
 
@get("/") 
async def index() -> str: 
    return "Hello, world!" 
 
 
@get("/user/{book_id:int}") 
async def get_user(user_id: int) -> dict[str, int]: 
    return {"user_id": user_id} 
 
 
app = Litestar([index, get_user])

Then, run the following command:

litestar run 
# Or you can run Uvicorn directly: 
uvicorn app:app --reload

You can now visit http://localhost:8000/ and http://localhost:8000/user/1 in your browser and you should see the responses of your two endpoints:

"Hello, world!"

and

{"user_id": 1}

Final Thoughts

These 5 modern Python libraries will help you build faster, smarter, and more scalable applications in 2025.

Which library are you most excited to try? Let me know in the comments!


Photo by Simone Hutsch on Unsplash