10 Insanely Useful Python Libraries You Haven’t Heard Of (Yet!)
Here are 10 insanely useful Python libraries that can supercharge your projects — yet most developers don’t know about them!

Discover hidden Python gems!
10 Insanely Useful Python Libraries You Haven’t Heard Of (Yet!)
Python’s vast ecosystem is filled with well-known libraries like NumPy, Pandas, and TensorFlow. But beneath the surface, there are hidden gems — powerful yet under-the-radar libraries that can supercharge your workflow.
In this article, I’ll introduce you to 10 insanely useful Python libraries that you probably haven’t heard of (yet!). These libraries will help you write cleaner, more efficient, and more powerful code.

1. Rich — Beautiful Terminal Output
Have you ever struggled with making your terminal output more readable? Rich is a game-changer. It allows you to print beautifully formatted text, tables, progress bars, and even syntax-highlighted code.

Why You’ll Love It:
Stunning terminal formatting
Built-in Markdown and syntax highlighting
Easy to use
Installation:
pip install rich
Example Usage:
from rich import print
print("Hello, [bold magenta]World[/bold magenta]!", ":vampire:", locals())

2. Typer — The Easiest Way to Build CLI Apps
If you’ve built command-line applications with argparse
, you know it can be tedious. Typer makes it effortless, utilize Python’s type hints for auto-documentation and validation.

Why You’ll Love It:
Intuitive syntax
Auto-generates help documentation
Works seamlessly with FastAPI
Installation:
pip install typer
Example Usage:
- Create a file
main.py
with:
def main(name: str):
print(f"Hello {name}")
- Run your application with the
typer
command:
// Run your application
$ typer main.py run
// You get a nice error, you are missing NAME
Usage: typer [PATH_OR_MODULE] run [OPTIONS] NAME
Try 'typer [PATH_OR_MODULE] run --help' for help.
╭─ Error ───────────────────────────────────────────╮
│ Missing argument 'NAME'. │
╰───────────────────────────────────────────────────╯
// You get a --help for free
$ typer main.py run --help
Usage: typer [PATH_OR_MODULE] run [OPTIONS] NAME
Run the provided Typer app.
╭─ Arguments ───────────────────────────────────────╮
│ * name TEXT [default: None] [required] |
╰───────────────────────────────────────────────────╯
╭─ Options ─────────────────────────────────────────╮
│ --help Show this message and exit. │
╰───────────────────────────────────────────────────╯
// Now pass the NAME argument
$ typer main.py run Camila
Hello Camila
// It works! 🎉
3. Loguru — The Ultimate Logging Library
Python’s built-in logging
module can be frustrating. Loguru simplifies logging with a cleaner API, structured logging, and automatic log rotation.

Why You’ll Love It:
No boilerplate setup
Pretty console output
Automatic file rotation

credit : loguru github
Installation:
pip install loguru
Example Usage:
from loguru import logger
logger.debug("That's it, beautiful and simple logging!")
# output
# 2025-03-27 09:53:56.431 | DEBUG | __main__:<module>:1 - That's it, beautiful and simple logging!
4. Pydantic — Data Validation Made Easy
If you work with APIs or data models, Pydantic is a must-have. It simplifies data validation using Python’s type hints, ensuring your data is always clean and structured.

Why You’ll Love It:
Type-safe data validation
Automatic data parsing
Integrates with FastAPI
Installation:
pip install pydantic
Example Usage:
from datetime import datetime
from typing import Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name: str = 'John Doe'
signup_ts: Optional[datetime] = None
friends: list[int] = []
external_data = {'id': '123', 'signup_ts': '2017-06-01 12:22', 'friends': [1, '2', b'3']}
user = User(**external_data)
print(user)
#> User id=123 name='John Doe' signup_ts=datetime.datetime(2017, 6, 1, 12, 22) friends=[1, 2, 3]
print(user.id)
#> 123
5. Poetry — Modern Python Dependency Management
Tired of pip
and requirements.txt
? Poetry makes dependency management and packaging effortless, ensuring reproducible builds and streamlined workflows.

Why You’ll Love It:
Simplifies package management
Handles virtual environments automatically
Faster and more reliable

credit : poetry Github
Installation:
pip install poetry
Example Usage:
poetry new my_project
cd my_project
poetry add requests
Checkout this article to setup you Django project with poetry:

6. httpx — Next-Gen HTTP Client
While requests
is popular, httpx is its more powerful successor, supporting async requests and better performance.

Why You’ll Love It:
Async support
HTTP/2 support
Drop-in replacement forrequests
Installation:
pip install httpx
Example Usage:
>>> import httpx
>>> r = httpx.get('https://www.example.org/')
>>> r
<Response [200 OK]>
>>> r.status_code
200
>>> r.headers['content-type']
'text/html; charset=UTF-8'
>>> r.text
'<!doctype html>\n<html>\n<head>\n<title>Example Domain</title>...'
Checkout this article to learn more about HTTPX:

7. PyInstrument — Supercharge Performance Profiling
Need to find slow parts of your code? PyInstrument provides a beautiful, interactive report of where your code is spending time.

Why You’ll Love It:
Fast and lightweight
Intuitive flame graphs
Great for optimizing code
Installation:
pip install pyinstrument
Example Usage:
from pyinstrument import Profiler
profiler = Profiler()
profiler.start()
# Your code here
profiler.stop()
print(profiler.output_text())
8. icecream — Debugging Made Sweet
Printing variables for debugging? icecream makes it cleaner and more informative with minimal effort.

Why You’ll Love It:
One-line debugging
Shows variable names automatically
Works inside Jupyter Notebooks
Installation:
pip install icecream
Example Usage:
from icecream import ic
x = 42
ic(x) # Outputs: ic| x: 42
Checkout this article to learn more about icecream

9. Faker — Generate Fake Data Easily
Need test data? Faker generates realistic fake names, emails, addresses, and more.

Why You’ll Love It:
Supports multiple languages
Easily customizable
Great for testing
Installation:
pip install faker
Example Usage:
from faker import Faker
fake = Faker()
fake.name()
# 'Lucy Cechtelar'
fake.address()
# '426 Jordy Lodge
# Cartwrightshire, SC 88120-6700'
fake.text()
# 'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
# beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
# amet quidem. Iusto deleniti cum autem ad quia aperiam.
# A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
# quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
# voluptatem sit aliquam. Dolores voluptatum est.
# Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
# Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
# Et sint et. Ut ducimus quod nemo ab voluptatum.'
10. Pendulum — Better Date and Time Handling
Python’s built-in datetime
module can be tricky. Pendulum makes date/time handling easier and more intuitive.

Why You’ll Love It:
Human-friendly syntax
Time zone support
Works as a drop-in replacement fordatetime
Installation:
pip install pendulum
Example Usage:
>>> import pendulum
>>> now_in_paris = pendulum.now('Europe/Paris')
>>> now_in_paris
'2016-07-04T00:49:58.502116+02:00'
# Seamless timezone switching
>>> now_in_paris.in_timezone('UTC')
'2016-07-03T22:49:58.502116+00:00'
>>> tomorrow = pendulum.now().add(days=1)
>>> last_week = pendulum.now().subtract(weeks=1)
>>> past = pendulum.now().subtract(minutes=2)
>>> past.diff_for_humans()
'2 minutes ago'
>>> delta = past - last_week
>>> delta.hours
23
>>> delta.in_words(locale='en')
'6 days 23 hours 58 minutes'
# Proper handling of datetime normalization
>>> pendulum.datetime(2013, 3, 31, 2, 30, tz='Europe/Paris')
'2013-03-31T03:30:00+02:00' # 2:30 does not exist (Skipped time)
# Proper handling of dst transitions
>>> just_before = pendulum.datetime(2013, 3, 31, 1, 59, 59, 999999, tz='Europe/Paris')
'2013-03-31T01:59:59.999999+01:00'
>>> just_before.add(microseconds=1)
'2013-03-31T03:00:00+02:00'
Wrapping Up
These 10 lesser-known Python libraries can boost your productivity, simplify your code, and make your development process smoother.
Which one will you try first? Let me know in the comments!
If you found this useful, follow me for more Python tips!
