08 Modern Python Libraries That Deserve More Hype in 2025 ๐
Youโve heard of Pandas and FastAPIโโโbut these fresh tools are the real productivity boosters in 2025.

Pythonโs ecosystem is massiveโโโbut these underrated gems are quietly making developers 10x faster.
08 Modern Python Libraries That Deserve More Hype in 2025 ๐
Python continues to dominate the programming world in 2025, and itโs not just because of its simplicity.
The real magic lies in its ever-evolving ecosystem of powerful libraries.
While giants like NumPy, Pandas, and FastAPI continue to shine, thereโs a fresh wave of modern libraries quietly revolutionizing the way we write Python code.
These arenโt your usual suspectsโโโthese are the underrated gems that can boost your productivity, streamline your projects, and make coding a lot more enjoyable.
Letโs explore 08 modern Python libraries that deserve way more hype this year.
1. ReflexโโโBuild Web Apps with Pure Python
What if you could build interactive frontend apps without touching HTML, CSS, or JavaScript?
Docs : https://github.com/reflex-dev/reflex
Reflex (formerly Pynecone) is doing just that. It lets you create full-stack web apps entirely in Python, including beautiful UIsโโโthink React components but Pythonic.
- Uses a declarative syntax like React
- Handles frontend + backend with a single codebase
- Hot reload, state management, routingโโโall included
Perfect for Python devs who want to build web apps without leaving their comfort zone.
Installation
pip install reflex
Example
You can use these command to create a reflex project:
mkdir my_app_name
cd my_app_name
reflex init
Letโs create a simple app :
import reflex as rx
import openai
openai_client = openai.OpenAI()
# Backend code
class State(rx.State):
"""The app state."""
prompt = ""
image_url = ""
processing = False
complete = False
def get_image(self):
"""Get the image from the prompt."""
if self.prompt == "":
return rx.window_alert("Prompt Empty")
self.processing, self.complete = True, False
yield
response = openai_client.images.generate(
prompt=self.prompt, n=1, size="1024x1024"
)
self.image_url = response.data[0].url
self.processing, self.complete = False, True
# Frontend code
def index():
return rx.center(
rx.vstack(
rx.heading("DALL-E", font_size="1.5em"),
rx.input(
placeholder="Enter a prompt..",
on_blur=State.set_prompt,
width="25em",
),
rx.button(
"Generate Image",
on_click=State.get_image,
width="25em",
loading=State.processing
),
rx.cond(
State.complete,
rx.image(src=State.image_url, width="20em"),
),
align="center",
),
width="100%",
height="100vh",
)
# Add state and page to the app.
app = rx.App()
app.add_page(index, title="Reflex:DALL-E")
Hit this command to run development server :
reflex run
You should see your app running at http://localhost:3000.

2. Robocorp / RPA FrameworkโโโPython for Automation Engineers
If youโre into RPA (Robotic Process Automation), Robocorp and its rpaframework
package are a game changer.
- Automate Excel, PDFs, emails, websites, APIsโโโeven legacy systems
- Built on top of Robot Framework with Python extensibility
- Ships with prebuilt automation libraries
Itโs time to stop writing brittle Selenium scripts and level up your automation game.
Docs : https://sema4.ai/docs/automation/quickstart-guide/python
3. TyperโโโThe Modern Way to Build CLIs
Youโve heard of Click. Youโve used argparse. But Typer, built by the creator of FastAPI, takes things to another level.
- Type hints become your CLI arguments
- Auto-generates help docs and command trees
- Built-in validation, tab completion, and more
Whether youโre building internal tools or shipping open-source projects, Typer makes CLI development elegant and fun.
Docs : https://typer.tiangolo.com/
Installation
pip install typer
Example
Create a file main.py
with:
def main(name: str):
print(f"Hello {name}")
This script doesnโt even use Typer internally. But you can use the typer
command to run it as a CLI application.
Run your application with the typer
command:
๐ฌ Run your application
typer main.py run
๐ฌ You get a nice error, you are missing NAME
Usage: typer [PATH_OR_MODULE] run [OPTIONS] NAME
Try 'typer [PATH_OR_MODULE] run --help' for help.
โญโ Error โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ Missing argument 'NAME'. โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐ฌ You get a --help for free
typer main.py run --help
Usage: typer [PATH_OR_MODULE] run [OPTIONS] NAME
Run the provided Typer app.
โญโ Arguments โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ * name TEXT [default: None] [required] |
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โญโ Options โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ --help Show this message and exit. โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
๐ฌ Now pass the NAME argument
typer main.py run Camila
Hello Camila
๐ฌ It works! ๐
This is the simplest use case, not even using Typer internally, but it can already be quite useful for simple scripts.
4. Pydantic V2โโโThe Data Validation Powerhouse (Now Even Faster)
While not exactly underrated, Pydantic 2.0 has been rebuilt from the ground up with performance in mind. It now uses Rust under the hood, making it blazing fast.
- Data validation + settings management
- Compatible with FastAPI, Typer, and more
- Works great with async code and complex nested data models
If youโre handling external data (APIs, user input, etc.), Pydantic is your best friend.
Docs : https://docs.pydantic.dev/latest/
Installation
pip install pydantic
Example
To see Pydantic at work, letโs start with a simple example, creating a custom class that inherits from BaseModel
:
from datetime import datetime
from pydantic import BaseModel, PositiveInt
class User(BaseModel):
id: int
name: str = 'John Doe'
signup_ts: datetime | None
tastes: dict[str, PositiveInt]
external_data = {
'id': 123,
'signup_ts': '2019-06-01 12:22',
'tastes': {
'wine': 9,
b'cheese': 7,
'cabbage': '1',
},
}
user = User(**external_data)
print(user.id)
#> 123
print(user.model_dump())
"""
{
'id': 123,
'name': 'John Doe',
'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
'tastes': {'wine': 9, 'cheese': 7, 'cabbage': 1},
}
"""
If validation fails, Pydantic will raise an error with a breakdown of what was wrong:
# continuing the above example...
from datetime import datetime
from pydantic import BaseModel, PositiveInt, ValidationError
class User(BaseModel):
id: int
name: str = 'John Doe'
signup_ts: datetime | None
tastes: dict[str, PositiveInt]
external_data = {'id': 'not an int', 'tastes': {}}
try:
User(**external_data)
except ValidationError as e:
print(e.errors())
"""
[
{
'type': 'int_parsing',
'loc': ('id',),
'msg': 'Input should be a valid integer, unable to parse string as an integer',
'input': 'not an int',
'url': 'https://errors.pydantic.dev/2/v/int_parsing',
},
{
'type': 'missing',
'loc': ('signup_ts',),
'msg': 'Field required',
'input': {'id': 'not an int', 'tastes': {}},
'url': 'https://errors.pydantic.dev/2/v/missing',
},
]
"""
5. HaystackโโโBuild LLM Apps, the Right Way
If youโre building anything with Large Language Models or RAG (Retrieval Augmented Generation), Haystack is your go-to framework.
- Built-in support for vector stores, LLM orchestration, pipelines
- Plug-and-play with OpenAI, Cohere, Hugging Face, and more
- Enables production-ready LLM applications
Think of it as LangChainโs more structured and battle-tested cousin.
Docs : https://docs.haystack.deepset.ai/docs/get_started
Installation
pip install haystack-ai
Example
In the example below, we show how to set an API key using a Haystack Secret. However, for easier use, you can also set an OpenAI key as an OPENAI_API_KEY
environment variable.
from haystack import Pipeline, Document
from haystack.utils import Secret
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.builders.chat_prompt_builder import ChatPromptBuilder
from haystack.dataclasses import ChatMessage
# Write documents to InMemoryDocumentStore
document_store = InMemoryDocumentStore()
document_store.write_documents([
Document(content="My name is Jean and I live in Paris."),
Document(content="My name is Mark and I live in Berlin."),
Document(content="My name is Giorgio and I live in Rome.")
])
# Build a RAG pipeline
prompt_template = [
ChatMessage.from_system("You are a helpful assistant."),
ChatMessage.from_user(
"Given these documents, answer the question.\n"
"Documents:\n{% for doc in documents %}{{ doc.content }}{% endfor %}\n"
"Question: {{question}}\n"
"Answer:"
)
]
# Define required variables explicitly
prompt_builder = ChatPromptBuilder(template=prompt_template, required_variables={"question", "documents"})
retriever = InMemoryBM25Retriever(document_store=document_store)
llm = OpenAIChatGenerator(api_key=Secret.from_env_var("OPENAI_API_KEY"))
rag_pipeline = Pipeline()
rag_pipeline.add_component("retriever", retriever)
rag_pipeline.add_component("prompt_builder", prompt_builder)
rag_pipeline.add_component("llm", llm)
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm.messages")
# Ask a question
question = "Who lives in Paris?"
results = rag_pipeline.run(
{
"retriever": {"query": question},
"prompt_builder": {"question": question},
}
)
print(results["llm"]["replies"])
6. PolarsโโโLightning-Fast DataFrames for Python
Move over PandasโโโPolars is here to crunch data 10x faster using Rust-powered performance.
- Blazing speed and low memory usage
- Lazy evaluation and parallel execution
- Familiar DataFrame API (with a few smart twists)
If youโre working with large datasets, Polars will change the way you think about performance.
Docs : https://docs.pola.rs/
Installation
pip install polars
Example
This is simple example to create a DataFrame using Polars:
import polars as pl
import datetime as dt
df = pl.DataFrame(
{
"name": ["Alice Archer", "Ben Brown", "Chloe Cooper", "Daniel Donovan"],
"birthdate": [
dt.date(1997, 1, 10),
dt.date(1985, 2, 15),
dt.date(1983, 3, 22),
dt.date(1981, 4, 30),
],
"weight": [57.9, 72.5, 53.6, 83.1], # (kg)
"height": [1.56, 1.77, 1.65, 1.75], # (m)
}
)
print(df)
shape: (4, 4)
โโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโ
โ name โ birthdate โ weight โ height โ
โ --- โ --- โ --- โ --- โ
โ str โ date โ f64 โ f64 โ
โโโโโโโโโโโโโโโโโโชโโโโโโโโโโโโโชโโโโโโโโโชโโโโโโโโโก
โ Alice Archer โ 1997-01-10 โ 57.9 โ 1.56 โ
โ Ben Brown โ 1985-02-15 โ 72.5 โ 1.77 โ
โ Chloe Cooper โ 1983-03-22 โ 53.6 โ 1.65 โ
โ Daniel Donovan โ 1981-04-30 โ 83.1 โ 1.75 โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโโดโโโโโโโโโ
7. FugueโโโWrite Spark Code Without Writing Spark Code
Ever wanted to scale your Pandas code to Spark or Dask without rewriting it? Fugue makes that possible.
- Write once, run anywhere (Pandas, Dask, Spark)
- Supports SQL + DataFrame transformations
- Ideal for ETL and big data workflows
Itโs your bridge between local dev and big data production.
Docs : https://github.com/fugue-project/fugue
Installation
pip install fugue
Example
The Fugue API is a collection of functions that are capable of running on Pandas, Spark, Dask, and Ray. The simplest way to use Fugue is the transform()
function. This lets users parallelize the execution of a single function by bringing it to Spark, Dask, or Ray. In the example below, the map_letter_to_food()
function takes in a mapping and applies it on a column. This is just Pandas and Python so far (without Fugue).
import pandas as pd
from typing import Dict
input_df = pd.DataFrame({"id":[0,1,2], "value": (["A", "B", "C"])})
map_dict = {"A": "Apple", "B": "Banana", "C": "Carrot"}
def map_letter_to_food(df: pd.DataFrame, mapping: Dict[str, str]) -> pd.DataFrame:
df["value"] = df["value"].map(mapping)
return df
Now, the map_letter_to_food()
function is brought to the Spark execution engine by invoking the transform()
function of Fugue. The output schema
and params
are passed to the transform()
call. The schema
is needed because it's a requirement for distributed frameworks. A schema of "*"
below means all input columns are in the output.
from pyspark.sql import SparkSession
from fugue import transform
spark = SparkSession.builder.getOrCreate()
sdf = spark.createDataFrame(input_df)
out = transform(sdf,
map_letter_to_food,
schema="*",
params=dict(mapping=map_dict),
)
# out is a Spark DataFrame
out.show()
+---+------+
| id| value|
+---+------+
| 0| Apple|
| 1|Banana|
| 2|Carrot|
+---+------+
8. Rich / TextualโโโTerminal UIs That Look Like Magic
Tired of boring terminal outputs? Enter Rich and its big brother Textual.
- Beautiful formatting for logs, tables, Markdown, syntax highlighting
- Textual lets you build full-blown TUIs (Terminal User Interfaces)
- Great for dashboards, monitoring tools, and CLIs
Itโs like React, but for your terminal. Yes, itโs that cool.
Docs : https://textual.textualize.io/tutorial/
Installation
pip install textual rich
Example
A simple example to create a TUI Apps.
from textual.app import App, ComposeResult
from textual.widgets import Label, Button
class QuestionApp(App[str]):
def compose(self) -> ComposeResult:
yield Label("Do you love Textual?")
yield Button("Yes", id="yes", variant="primary")
yield Button("No", id="no", variant="error")
def on_button_pressed(self, event: Button.Pressed) -> None:
self.exit(event.button.id)
if __name__ == "__main__":
app = QuestionApp()
reply = app.run()
print(reply)
Running this app will give you this result:

To effortlessly add rich output to your application, you can import the rich print method, which has the same signature as the builtin Python function. Try this:
from rich import print
print("Hello, [bold magenta]World[/bold magenta]!", ":vampire:", locals())

Final Thoughts
The Python ecosystem is more vibrant than ever in 2025. While the old favorites still hold their ground, these rising stars deserve your attention. They reflect where the community is headingโโโtoward better performance, developer experience, and intelligent tooling.
So the next time you start a project, explore beyond the usual suspects. You might just find a new favorite in this list.
โ๏ธ If you enjoyed this article, donโt forget to clap, share, or follow me for more Python insights, modern dev tools, and productivity hacks!
Got a hidden gem of a library you love? Drop it in the commentsโโโIโd love to check it out.
